翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

unfoldable cardinal : ウィキペディア英語版
unfoldable cardinal
In mathematics, an unfoldable cardinal is a certain kind of large cardinal number.
Formally, a cardinal number κ is λ-unfoldable if and only if for every transitive model ''M'' of cardinality κ of ZFC-minus-power set such that κ is in ''M'' and ''M'' contains all its sequences of length less than κ, there is a non-trivial elementary embedding ''j'' of ''M'' into a transitive model with the critical point of ''j'' being κ and ''j''(κ) ≥ λ.
A cardinal is unfoldable if and only if it is an λ-unfoldable for all ordinals λ.
A cardinal number κ is strongly λ-unfoldable if and only if for every transitive model ''M'' of cardinality κ of ZFC-minus-power set such that κ is in ''M'' and ''M'' contains all its sequences of length less than κ, there is a non-trivial elementary embedding ''j'' of ''M'' into a transitive model "N" with the critical point of ''j'' being κ, ''j''(κ) ≥ λ, and V(λ) is a subset of ''N''. Without loss of generality, we can demand also that ''N'' contains all its sequences of length λ.
Likewise, a cardinal is strongly unfoldable if and only if it is strongly λ-unfoldable for all λ.
These properties are essentially weaker versions of strong and supercompact cardinals, consistent with V = L. Many theorems related to these cardinals have generalizations to their unfoldable or strongly unfoldable counterparts. For example, the existence of a strongly unfoldable implies the consistency of a slightly weaker version of the proper forcing axiom.
A Ramsey cardinal is unfoldable, and will be strongly unfoldable in L. It may fail to be strongly unfoldable in V, however.
In L, any unfoldable cardinal is strongly unfoldable; thus unfoldables and strongly unfoldables have the same consistency strength.
A cardinal k is κ-strongly unfoldable, and κ-unfoldable, if and only if it is weakly compact. A κ+ω-unfoldable cardinal is totally indescribable and preceded by a stationary set of totally indescribable cardinals.
==References==

* ''Unfoldable Cardinals and the GCH'', Joel David Hamkins. The Journal of Symbolic Logic, Vol. 66, No. 3 (Sep., 2001), pp. 1186–1198
* ''Strongly unfoldable cardinals made indestructible'', Thomas A. Johnstone. J. Symbolic Logic, Volume 73, Issue 4 (2008), 1215-1248.
* ''Diamond (on the regulars) can fail at any strongly unfoldable cardinal'', Joel David Hamkins (The City University of New York), Mirna Džamonja (University of East Anglia). (Submitted to arxiv (http://arxiv.org/abs/math/0409304) on 17 Sep 2004)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「unfoldable cardinal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.